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ABSTRACT This literature survey presents in a nutshell different parameters

for the effectiveness of the green spectrometric procedures, which have

been applied to the determination of organics, inorganics, and metal ions

in different matrices. The following issues were considered: the main

aspects of miniaturization, reagent replacement, reduction of wastes, and

on-line recovery and detoxification, which made the analytical procedures

sustainable. Also, a discussion of analytical characteristics along with spec-

trometric methodologies and applications is included.
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INTRODUCTION

Traditionally, analytical chemistry involves the use of solvents and

reagents, which are frequently hazardous and put at risk both the human

beings and environment. Green Analytical Chemistry is defined as environ-

mentally benign analytical methodologies.[1] It is a science-based nonregula-

tory and economically driven approach for attaining the goals of

environmental protection.[1,2] Green Chemistry (GC) is the application of a

set of principles[2] that reduces or eliminates the use or generation of hazar-

dous substances in the design, manufacture, and use of chemical products.

In practice, GC is taken to cover a much wider range of issues[3] using and

producing chemicals with minimum waste. GC also encompasses reducing

other associated environmental impacts[4] including reduction in the amount

of energy used in chemical processes. In fact, GC is not different from tradi-

tional chemistry in as much as it embraces the same creativity and innova-

tion that has always been central to classical chemistry. With an increase

in environmental consciousness throughout the world, there is a challenge

for chemists to develop new products, improved processes, and better

services that achieve necessary social, economical, and environmental

objectives. Since the nature of chemicals and types of transformation are

widely varied, so are the GC solutions that have been proposed. Thus there

is a constant demand to the development of greener, yet reliable, analytical
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procedures, because several current analytical

methods employ highly toxic reagents, resulting

themselves in a potentially negative environmental

impact. For developing a new analytical procedure,

the amount and toxicity of the wastes generated

are as important as any other analytical feature.[5]

Although chemists are environmentally concerned,

they hardly use the term ‘‘green.’’ So, preliminary stu-

dies in this field used the terms ‘‘environmentally

friendly’’ methods[6] or ‘‘clean’’ methods.[7] Neverthe-

less, after the publication of the review of Anastas[8]

on Green Analytical Chemistry (GAC), more publica-

tions are coming up related to the use of friendly

methodologies. With the end in view, the present

literature survey has been conducted, which will

include analytical methodologies suitable to greener

previously available methods to solve real problems.

Chemical analysis and monitoring play an impor-

tant role in estimation to the extent of the influence

of chemists upon the environment. Recently a large

number of analytical methodologies have been

introduced in practice including incremental

improvements in established methods by changing

or modifying reagents and solvents, reducing chemi-

cals, or incorporating on-line detoxification steps. On

the basis of the literature data and observation of cur-

rent trends in chemical analysis and monitoring, it can

be stated that rapid progress is being made in the

development of those analytical methodologies that

assure observation of the principles of GAC.[9]

To our knowledge, only five reviews[1,8,10–12] have

been published on GAC although more works are

being published on environmentally friendly meth-

odologies. The present review will include an

overview of green techniques, especially concerning

spectrometry in the analysis of environmental and

biological samples.

CLEAN PRETREATMENT

METHODOLOGIES

Analytical procedures typically involve a number

of equally relevant steps for sampling, sample pre-

paration, isolation of target compounds, identifica-

tion, quantification, and data handling. In many

application areas, sample preparation is still the bot-

tleneck of such procedures. This is especially true in

the case of environmental and biological sample ana-

lysis where sophisticated and powerful hyphenated

systems for instrumental analysis of the final extracts

contrast sharply with traditional high reagent

consumption, large-scale, and labor-intensive proce-

dures that are based on liquid–liquid extraction or

Soxhlet extraction for sample pretreatment. Several

analytical steps involved in such procedures are

usually carried out off-line, which make them tedious

and time-consuming, prone to loss of analytes, and at

the same time prone to contamination, because of

the continual manual manipulation of the extracts.

In recent years, much effort has been devoted to

eliminate these drawbacks. The principles of GC[1,2]

may be utilized to formulate the major features

depicting the green analytical methodologies. The

following targets are considered to be the vital

ones[13]: reduction of the amounts of reagents, elim-

ination or reduction of the amount of solvents, and

reduction of energy consumption, together with the

minimization of the contact of the operator with sam-

ples and reagent and the detoxification of wastes.

It has been demonstrated that water at supercriti-

cal (400�C, 350 bar) and superheated (250�C, 50

bar) conditions can be used as an alternative to

organic solvents, for extraction of polycyclic aro-

matic hydrocarbons (PAHs), n-alkanes, alkylben-

zenes, and polychlorinated biphenyls (PCBs) from

river sediment and soil samples.[14–16] It has been

also shown that water at temperatures above

100�C, under sufficient pressure to remain as a

liquid, is capable of replacing organic-aqueous

mixtures used in reversed-phase HPLC[17–19] and

steam water has been used as a mobile phase for

gas chromatography.[20]

A good number of green analytical procedures

have been reported to extract and concentrate

analytes. For example, in comparison to classical

liquid–liquid extraction, extractions by using

ultrasound,[21] microwave-assisted treatment,[22,23]

supercritical fluid,[19,24–26] membranes, and cloud-

point[27,28] have been reported in which amount of

organic solvents used could be reduced or avoided.

Ultrasounds are used to extract analytes with a

drastic reduction of solvents and energy consume

or without the use of organic solvents. Just by using

ultrasound water bath the analytes are homogenized

and the supernatant, after centrifugation, is collected

for analysis. Although the sonication-assisted

approach has not yet been studied extensively, some

applications[21] have already demonstrated the
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potential of sonication for miniaturized, rapid,

relatively inexpensive and quantitative dynamic

extraction and on-line purification.

Microwave-assisted extraction (MAE) reduces or

avoids the use of organic solvents for extraction.

Even water is used as a safe and environmentally

friendly solvent in microwave-assisted extraction.

The evaluation of extraction efficiency shows that

MAE has a high extraction efficiency compared to

Soxhlet extraction when water content is lower than

60%.[23] Furthermore, there is an hour to minute

reduction in extraction time with MAE.[29]

Supercritical fluid extraction (SFE), based on the

utilization of a CO2 under supercritical conditions,

is a technology suitable for extraction and purifica-

tion of a variety of compounds. The use of fluids

under supercritical conditions was found to have

substantial advantages in terms of higher efficiency

and lower time consumption as compared with

conventional techniques.[19,24–26] Despite SFE being

a miniaturized and solvent-free extraction method

novel, robust, and often less expensive extraction

techniques like pressurized liquid extraction (PLE)

have emerged in the field of green analytical techni-

ques. PLE, introduced in the mid-1990s,[30] uses a

typically dispersed sample in a drying or inert

sorbent such as sodium sulphate. Hydromatrix or

diatomaceous earth is packed in a stainless steel cell

and, once inserted in a closed flow-through system,

extracted with the selected solvent at temperatures

above its atmospheric boiling point. Since the sol-

vent must be kept liquid during extraction, relatively

high pressures are also applied. The efficiency,

rapidity, and moderate solvent consumption are the

reasons for its widespread application of PLE.[16]

During the last decade researchers have concen-

trated on carrying out various works with reduction=

elimination of reagents and solvents. For example,

extraction of surfactants,[14,15] pesticides,[22,25,27,38,42]

antibiotics,[21,43] phenols,[33–35,40] alkaloids,[26,47] bio-

active substances,[17,49] polycyclic aromatic

hydrocarbons[16,45,48,52] and other organic com-

pounds,[18,20,23,24,27,28,31,32,37,39,41,44,46,53] fluorinated

compounds,[50] and metal ions[51] have been conveni-

ently extracted from most of the environmental and

biological matrices without the use of organic solvents.

Table 1 summarizes the main principles of differ-

ent clean pretreatment methodologies proposed in

the literature.

GREEN SPECTROMETRIC
DETERMINATION PROCEDURES

The increasing demands for fast, well-balanced,

cost-effective, and green analytical methods are a

major incentive to improve the classical procedures

used for measurement in real sample analysis. In

most classical procedures, the use of rapid and

powerful instrumental techniques for the final

separation and detection together with the automa-

tion and miniaturization of procedures and instru-

ments have reinforced the use of spectrometric

methods as a green alternative. The efforts made in

this field in the last 10–15 years have led to the adap-

tation of existing methods and the development of

new techniques to save time and chemicals, and to

improve overall performance. One way has been to

develop at-line or on-line and frequently automated

systems. In these approaches, miniaturization has

been a key factor in designing integrated analytical

systems to provide higher sample throughput and=or

unattended operation.[7] Micro- or miniature devices

have been developed by various authors for flow

analysis to obtain excellent performance. One of

the advantages of miniaturization is small reagent

consumption and a field-affordable size for sustain-

able environmental analysis. The miniature device

is not only for operational usefulness, but also for

the performance of the instrument.[55] Miniaturized

methods were preferred[56] due to their low operat-

ing costs, environmentally friendly character, and

suitability for hyphenated techniques. Additionally,

on-line decontamination strategies have provided

fully mechanized procedures that avoid collateral

effects of the spectrometric measurements.

Table 2 provides some examples of clean spectro-

metric methods published in recent years with an

explanation of the clean aspects of the used procedures

and the main analytical features of methods employed.

From these examples, it can be concluded that greener

the spectrometric measurements not involves necessa-

rily to sacrifice the performance of classical methods

and thus it is compatible with the search for improved

characteristics of methods and their sustainability.

On concerning the different methods proposed it

can be seen that they can be classified as a function

of their miniaturization, automation, or the incor-

poration of on-line decontamination or reagent

recovery units.[1]
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Regarding the type of analytes considered

different strategies can be found for both, organic

and inorganic compounds with special strategies

for the determination of metal ions.

Green Determination of Organics

Vibrational spectrometry methods, based on both

near-infrared[63,65] or middle-infrared[60,72,73] and

Raman spectrometry[41,42] have been extensively used

for green spectroscopy determination of organics

based on the automation of measure-

ments[60,63,65,72,73] and the replacement of chlorinated

solvents[63,65] additionally than on the direct analysis

of samples without any previous treatment.[42]

On the other hand, the automation of UV-Vis

measurements can reduce drastically the amount of

reagents consumed in the spectrometric determina-

tion of organics[57–59,61,64,66,72] and can incorporate

on-line photodegradation processes for the detoxifi-

cation of wastes[57,58,61] or on-line recovery of

solvents based on the use of distillation units.[60]

Chromatographic-based determination methods

can be greened through the replacement of toxic

solvents[70] and the improvement in sample pretreat-

ment.[69,19–28]

Green Determination of Anions

Green determination methods have been proposed

in the literature for the spectrometric determination of

nitrates in waters[5] and ions in industrial oils.[81]

An approach for performing continuous liquid–

liquid extraction under high pressure and tempera-

ture[81] has been applied for the separation of

inorganic ions (e.g., Cl�, F�, SO2�
4 ) from used indus-

trial oils. Pressurized acidified hot water was used as

the extractant. This simple method for anions extrac-

tion in used oils presents several positive aspects:

(1) no complex pretreatment of the oil; (2) low cost

of extractant (5% HNO3); (3) low consumption of

energy; (4) short extraction time (�10min); and (5)

high efficiency of the extraction process (79.4–97.1%

for Cl�, 79.2–100% for F�, and 80.4–99.8% for

SO2�
4 ).

Green Determination of Metal Ions

The automation of classical atomic spectrometric

methods for metal ions determination has been

proposed for greening these methodologies[77–79]

additionally than the use of alternative natural

reagents such as chromophore agents.[76]

Naphthol- and resorcinol-based azo dyes have

been studied as metal ion extractants in aqueous

biphasic systems as a function of pH. The distribution

ratios of Fe(III), Co(II), and Ni(II) were enhanced by

several orders of magnitude at high pH in contrast to

the behavior of Cs(I), Cd(II), and Eu(III) whose

partitioning behavior was largely unaffected by the

presence of these extractants at any pH.[51]

Continuous pressurized liquid–liquid extraction

with 20% HNO3 þ1M KCl þ10�3M EDTA has been

developed for the extraction of metals (V, Ni, Zn,

Fe, and Cu) from the oil resulting from recycled tires.

Recoveries >90% have been obtained.[82]

On the other hand, the green spectrometric deter-

mination of metal ions has incorporated on-line

detoxification strategies like metal passivation[79] thus

incorporating approaches developed for large-scale

remediation of soils and waters.

A GC approach was developed by Cathun et al.[83]

as an option for remediation of toxic mercury in the

environment. It was found that organic and inorganic

mercury pollutants could be mineralized in the envir-

onment with cyclodextrins. The bound mercury

compounds resisted biodegradation and were found

to be non-toxic to environmental microorganisms

under laboratory conditions. The toxicity of the

Hg-contaminated soil decreased to 80% after treat-

ment with cyclodextrins. A solution of 1% cyclodex-

trins was deemed sufficient for inclusion of Hg in

both soil and water and this methodology could be

incorporated to greener flow injection methods

employed for mercury speciation.

CONCLUSION

The ultimate value of Green Chemistry lies in its

applicability for the new millennium. So the chal-

lenges to reduce the waste, the toxicity of chemicals,

and the amount of energy used, while still providing

the best output that the society needs, are overcome

through Green Analytical Chemistry.

The increasing demand for faster, cost-effective,

and environmentally friendly analytical methods is

a major incentive to improve the classical procedures

used for sample treatment in real sample analysis.

Examples of application of Green Chemistry in the
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spectrometric analytical methodologies have been

presented. The principles of this approach include

primary elimination or at least reduction of the

amounts of reagents and solvents during laboratory

work, particularly at the sample preparation stage,

strong reduction of wastes, and on-line recovery or

decontamination of analytical residues.

Thus, if we can develop an efficient methodology

for chemical analysis (economically and technologi-

cally viable), which incorporates human and envir-

onmental safety as its core principle, then truly we

can have sustainable green chemical analysis proces-

sing and in this sense it can be evidenced that

spectrometry-based methods are themselves a green

alternative[12] and that based on the improvement

of sample preparation and determination conditions

the spectrometric methods can be additionally

greened.[1]
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